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Effects of surface charge on the two-dimensional 
one-component plasma: I. Single double layer structure 

E R Smith 
Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 6 August 1981, in final form 11 November 1981 

Abstract. The recent exact analysis of the canonical partition function and one- and 
two-particle distribution functions for a disc of classical one-component two-dimensional 
plasma of particle charge -4 with a uniform neutralising charged background is extended to 
consider the effects of sudace charge and of having the dielectric constant outside the disc, 
e2, different from that inside the disc, e l .  The system is characterised by bulk density p. the 
plasma parameter r = $ / ~ l k T ,  the surface charge density U¶ and the parameter A = 
( E ~  - eZ)/(el + E ~ ) .  For r = 2, A = 0 or 1 and any value of p or U, the canonical partition 
function and one- and two-particle distribution functions are calculated exactly. The bulk 
thermodynamic properties are independent of u and A. The surface properties (surface 
excess free energy, density profile and two-particle correlation functions) are calculated in 
the thermodynamic limit and shown to depend strongly on both U and A. 

1. Introduction 

The electrostatic double layer set up close to the surface of a charged electrode 
immersed in an electrolyte has been an object of study for many years. For a dilute 
electrolyte, the standard Debye-Huckel theory is capable of reproducing many 
experimental findings, but for a concentrated electrolyte there seems to be no complete 
theory as yet. Thus recourse is had to approximate analytic methods in statistical 
mechanics and to numerical simulations. Unfortunately the approximate methods have 
so far only given results for simple model potentials. This means that it is difficult to 
make meaningful comparisons with experiments on real systems. On the other hand, it 
is difficult to compare approximate methods with numerical simulations using the same 
model potential because there is no clear consensus on how to carry out the numerical 
simulations (Torrie and Valleau 1980). The problem is that the long-ranged nature of 
the ion-ion interaction in the electrolyte means that in a finite simulation sample, some 
account of the rest of an infinite system must be taken. There is some debate about how 
to take account of this. The situation with simulations of surface properties of ionic 
systems is even less clear. Thus it is clear that exact results for any simple model system 
would be of considerable value since they can be used to test any simulation procedure. 

This paper provides such an example. The model is the classical two-dimensional 
one-component plasma. Recently Alastuey and Jancovici (1981) and Jancovici (198 1) 
have published exact results for this system at a particular temperature in the thermo- 
dynamic limit. This paper extends those results to include the effects of a linear surface 
charge density on the surface of the system and some analysis of what happens when the 
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dielectric constant inside the system is different from that outside the system. This last 
point is of particular interest in the context of simulation of ionic systems. 

immersed in a 
continuous medium of dielectric constant c2. The disc containsN particles of charge -q 
and a uniform background of charge density W .  The edge of the disc contains a line 
charge density aq and the system is overall neutral so that 

Consider, then, a disc Q of radius R with dielectric constant 

.nR2v + 2 r R u  = N. (1.1) 

The interaction potential between charges is a solution of the two-dimensional Poisson 
equation. For this system, with U = 0 and .s2 = E ~ ,  Hauge and Hemmer (1971) have 
shown that the thermodynamic limit of the pressure is given by 

P = (kT-qz/4&i)p (1.2) 

where p = N/wRz is the bulk particle density. The system is characterised by the 
parametersp, r = q2/E,kT, A = ( E I  - E Z ) / ( E ~  + 8 2 )  and U. Alastueyand Jancovici (1981) 
and Jancovici (1981) obtained expressions for the canonical partition function and one- 
and two-particle distribution functions for any value of p with r = 2, A = 0, U = 0. It 
may be noted that the pressure of equation (1.2) becomes negative for r > 4 .  Such a 
thermodynamically improbable event occurs because of the fixed charge background 
imposed on the system. 

The potential at r due to a unit positive charge at s is a solution of 

(1.3) 

here E ( r )  = c1 for r E Q and E (r) = e2 for r& R. This equation may be solved using the 
usual boundary conditions of continuity of the potential and the normal component of 
electric displacement at the edge of Q, boundedness at r = 0 and the requirement that as 
r-*co, 4(r, s) - -si1 In Irl. The surface charges are assumed to be just inside the 
surface of the disc. For r, s E R, the solution to the boundary value problem for q5 is 

1 2 s -  r s2r2 
E1 2E1 A ( R 2 + T )  

-- In (Is - rI2/R2) -- In 1 -- 
q5(r,s)= ~ (1.4) 

1 
In RZ.  -- 

2E2 

The energy of N particles at rl, . . . , r N  and the background and surface charges may 
now be evaluated to give E({ri}) = (q2/2c1) W({ri}) with 

W ( { r i } ) = - i N 2 + X ( 2 N + X ) / 4 + N  l n R + N *  r:/R2-A 1 ln(1-rf/R2) 
N N 

i = l  i = l  

-E [In (rt./R2)+A In (1 -2ri rj/R2+r?rf/R4)]. 
i C j  

Here rij = ri - rj, X = 2wRu and N* = N - P. The canonical partition function is, in its 
usual form 

zN(r, A, cl = - fi rr dr, de2 exp[-&W({ri})]. (1.6) 

Some of the simplifying advantages of studying r = 2 and A = 0 or 1 are immediately 

N ! b 1  0 
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apparent. The canonical distribution functions are 

~ ( n ) ( r ~ ,  * 9 r n  ; r, A, a) 
N R  $T 

l=n+l  0 - T I  

= [ ( N  - n)!ZN(r,  A, a)]-' n rl drl I der exp [-$r W({rj})] .  (1.7) 

In the next section &(r, A, a), p&; r, A, a) and p&, r2; r, A, a)  are evaluated 
exactly for r = 2 and A = 0 or 1. In 0 3, the surface excess free energy is discussed in the 
thermodynamic iimit and the density profiles close to the surface all derived for both 
A = 0 and 1, together with representations for the two-particle distribution functions 
close to the surface. The paper concludes with some discussion in 0 4. 

2. Exact results for I' = 0, A = 0 or 1 

2.1. A = 0 

For this case the analysis repeats that of Alastuey and Jancovici (1981) and Jancovici 
(1981) very closely. The partition function is 

The method of integration is precisely that used by Alastuey and Jancovici (1981) and 
thus the partition function may be written 

where 

y(s, x )  = lox ts-' e-' dt (2.3) 

and r12 = R(z1 -zz), cos 822 = t l  z2 / z1z2 .  These results are identical to those of 
Jancovici (1981) for a = 0, when N* = N. 
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2.2. A =  1 

This choice of A is made in spite of its unphysical nature because it is the only other case 
for which a useful representation of the integrand in the partition function has been 
obtained. This representation is also a van der Monde determinant, this time of order 
2N x 2 N  (cf the N x N determinant used in deriving equations (2.3), (4) and (5)). 
Consider the determinant DZN with elements 

(2.7) DzN,,, = U;- ' ,  I, j E [ l ,  2N]. 

The usual product representation of det DZN may be rearranged in the form 

Now let 
-1 ai = zj exp(iei) a2Ncl- j  = z exp(iOj). 

Then det DZN may be further rearranged to give 

det&N= n exp[ie~(2N-l)](l-t:)} 
N 

I = 1  

N-1 N 

x n JJ (2i-2~)2(1-2zj ' zl+z:z;) .  
/=1 j = l + l  

Thus, using equation (1.5) the canonical partition function may be written 

exp [?N2 - N In R - Z(2N + 9 / 4 3  
(7FR2)N 

ZN(2, 1, (T) =- 
N !  

exp [ - i e I ( 2 ~ -  111) det DZN. 

The determinant in this expression has the expansion 
ZN! N 

P= 1 I = 1  
exp {iOf[P(I) + P ( 2 N +  1 - E )  -21) P(I)-P(ZN+ 1 -I 1 detDZN= 1 &(PI Z f  

(2.10) 

(2.1 1) 

(2.12) 

where P is one of the (2N)! permutations P(1,. . . , 2 N }  ={P(l), . . . , P(2N)) and &(P)  
is its parity. If equation (2.12) be substituted into equation (2.11), then integrations 
over the 61 may be performed immediately to give zero unless P(1) +P(2N + 1 -I) = 
2 N  + 1 for all I E [l, NI, when the integral is one. These contributing permutations may 
all be derived from permutations of (1, . . . , N}. They may be classified according to 
whether ( a )  1 s P ( I ) c N  and N +  1 c P ( 2 N +  1 -E)s2N or (b) N +  1 s P ( I )  c 2 N  and 
1 s P(2N + 1 - 1 )  c N. If P(I), P(2N + 1 - I) are of type (b) they may be derived from a 
permutation with P(I), P(2N + 1 -I) of type (a) by one interchange and hence an extra 
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factor -1 in the parity of the permutation. These considerations allow the partition 
function to be written 

zN(2, I , (T)=(TR')~ exp[:N2-NlnR 

- Z(2N + X)/4]N*-N"c1''2 fi G(1, N*, N )  (2.13) 
1=1 

where 

G(I ,  N*, N) = r(i ,  N*) - N*-- ( '~+~-~ ' )  r ( 2 N  + 1 - I ,  N*). (2.14) 

The one-particle distribution function may be computed from its representation 
(equation (1.7)) by first using equations (2.12) and (2.10). It may be averaged over el 
(since it is radially symmetric), so that all the 8' variables may be integrated out in the 
same way as for the partition function. The integration over the (N - 1) zI variables 
then gives 

(1 - x 2 N + 1 - 2 k  >. (N*x)~- '  
Hl(x, N*, N) = 1 

k = i  G ( k ,  N*, N) 

(2.15) 

(2.16) 

An immediate consequence of this result is that the density at the surface of the disc is 
zero. This is in accord with the notion that the interaction of a particle with its own 
image (of like sign) in the surface should give a strong repulsion from the surface. 

The two-particle distribution function may be evaluated in the same way, though the 
counting of contributing permutations is complicated by the fact that only the angle 
variables &,. . . , 6, are integrated out. The final result is 

p(z)(Rzi, Rz2; 2 ,1 ,  a)  

= v2{Hi(zT, N*, N)Hi(z;, N*, N )  

-exp (-T~~~:~)[IHI(z~zz exp (ie12>, N*, N)12 

exp [ ~ N * ( z I / z ~ ) ( ~  - z ; >  cos el211 -z;(2N-1) 

XHI(ZI/ZZ) exp ( i M ,  N*, N)I21). (2.17) 

It will be shown below that for 1x1 < 1, the functions H&, N*, N )  and Hl(x, N*, N )  
have a limit of one as N + m .  This means that p&;2 ,A ,a )=p  and 
~ ( ~ ) ( r ~ ,  r2; 2, A, a) =p2[1  -exp (-7rpr?2)] for all values of U and A = 0 or 1, in the bulk 
of the plasma. The thermodynamic limit of the free energy is precisely that obtained by 
Alastuey and Jancovici (1981) for all U and A = 0 or 1. 

3. Surface properties 

The thermodynamic limit of the excess free energy per unit length of surface due to 
increasing the surface charge density from zero a4 is defined by 
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The density profile in the thermodynamic limit for r = 2 is given by 

DA(x; a) = lim ptl,(R - x ;  2, A, a) (3.2) 
R-m 

while the two-particle correlation function for two particles placed at the points shown 
in figure 1 is defined in the thermodynamic limit for I7 = 2 as 

DA(X1, y, XZ; a) = lim m ( ( R  - x l ) i ,  ( R  - x 2 ) i  + y f ;  2, A, a). (3.3) 
R-CC 

Here a = ~r(27r/p)'/~ is a useful dimensionless parameter. 

- Y -  

1' x2 

Fgve  1. Sketch of position of particles with respect to the surface for calculating 
two-particle distribution functions. 

The evaluation of equation (3.1) for A = 0 from equation (2.2) requires the thermo- 
dynamic limit of a sum of logarithms of incomplete gamma functions. This sum may be 
evaluated using the uniform asymptotic expansion (Erdelyi 1953) 

y ( l +  M, M + J 2 M y )  = br(i + M)(I + erf(y) + o(M-'/')) (3.4) 

with erf(y) being the usual error function. In the limit R +a, the sum reduces to a 
Riemann integral and gives 

1/2 @ ( 2 , 0 , ~ ) = - - ( ~ )  q2  (a ( l -21n2)-$a3+2 [omln (erfc(t))dt). 
4E1 27r 

(3.5) 

A similar expansion of the logarithm of G(k, N*, N) may be used to give 

where 

p(r, a)= 1 +erf(t-a)-e4"' erfc(t+a). (3.7) 

Definef(A, a) = AF(2, A, ~)[q2(p/27r)"2/4~l]-'. Plots of f(0, a) andf(1, a) are given 
in figure 2. The minima are at a. and a1 where 

(3.8) 1 + 2 a i  = -2 In ($ erfc(a0)) 

and 

(3.9) 
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a 

-1 

It is useful to consider 

Figure 2. Plots of scaled excess free energy density: 
-, f(0; a); -- - - , f(1, a). 

and 

(3.10) 

(3.11) 

since, in addition to giving equations for a. and a l ,  these derivatives are connected 
below with properties of the density profile. 

The density profiles resulting from equation (3.2) may be evaluated using the same 
uniform asymptotic expansion of the incomplete gamma functions as was used for the 
partition functions. The results may be written 

D0(x; a ) = p h O ( ~ x ;  a);Dl(x; a)=phl(Kx; a) (3.12) 

where K = ( 2 ~ p ) ” ~  and 

and 

(3.13) 

(3.14) 

The contact values may be evaluated analytically in each case and are Do(O;a)= 
-p In (1 erfc(a)) and Dl(0; a) = 0. Figure 3 gives a plot of Do(0; a ) / p  as a function of a. 
Figures 4 and 5 give plots of /io([, a) and hl(&, a) respectively for several values of a. 
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a 

Figure 3. Plot of contact density for A = 0 as a function of Q 

The Gibbs adsorption isotherm 

(3.15) 

may be computed by using a convergence factor exp(-sx). The result is MA(a)  = w for 
both A = 0 and A = 1. This means that the net double layer is electrostatically neutral in 
each case. The convergence of the integral in equation (3.15) implies that h&; a)+ 1 
as x + 00 for both values of A, thus giving the results for the bulk distribution functions 
quoted in 0 2. These representations of h&; a)  are also useful in evaluating the 
two-particle distribution functions close to the wall. Reduction of the sums in equations 
(2.5 and 17) gives 

and 

Dlbl, y ,  xz; a )  

= p 2 { h l ( K x 1 ;  a ) h l ( ~ x z ;  a)-exp ( - r p r 2 ) [ t h l ( ~ K ( x l + x z + i y ) ;  a)/’ 

-exp ( - ~ K ~ X I X Z  - ~ ~ K x ~ ) / ~ I ( $ K ( x I  -xz+iy); a)lz]} (3.17) 

where r2 = (xl - x2)’ + y2. 
Finally, because qualitative discussions of double layer structure often refer to the 

dipole moment set up by charged layers at a surface, it is of interest to consider the 
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4 

3 

- 
d . ,  
2 ‘  
P 

Figure 4. Plots of h&x; a) =Do(x; a)/@ as a function of K X .  Labels on curves refer to 
appropriate value of a. 

quality 

(3,18) 

A strip of the system normal to the surface and of width w has dipole moment wP~(a!)  
about the x = 0 end of the strip. For both A = 1 and A = 0, this integral may be evaluated 
using a convergence factor exp(-sx). 

For both A = 0 and A = 1, comparison of the result of this evaluation with equations 
(3.10 and 11) gives 

(3.19) 

Thus the surface excess free energy is minimal when P A ( c u )  = 0. This result, together 
with the condition F(2, A, 0) = 0 also gives 

AF(2, A, a) = -2wq Pa(a’(21~/p)’’~) do’ I (3.20) 
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I 
Figure 5. Plots of h l ( ~ x ;  (I) =Ul (x ;  a ) / p  as a function of K X .  Labels on curves refer to 
appropriate values of a. 

4. Discussion 

The first point to note is that the excess free energy per unit length of surface considered 
as a function of U at a fixed bulk density p has a minimum for non-zero surface charge U. 

These minima'are not at zero surface charge because, as figures 4 and 5 show, the 
surface layer contains considerable structure even for cr = 0. Adjusting this surface 
structure significantly requires U # 0 (since M~(cy)  = cr), and such adjustment turns out 
to be capable of lowering the surface free energy. 

Jancovici (private communication) has pointed out that equation (3.19) in fact holds 
for all r and may be generalised to higher dimensions and multicomponent systems. For 
this system he considers the plasma in a parallel plate condenser with surface charge 
densities *u4 giving an electric field E = 2mrq. The Hamiltonian for this system may 
be written, for plates of unit area at x = *L 

L 

H ( E )  = H(0)  + q E ( x ~  + . . . + xN) - qEp I-, x dx. (4.1) 

The total free energy 

1 
F = -kT In I exp ( - - H ( E ) )  kT drl . . , dr, 

then has derivative 

(4.2) 

(4.3) 



Classical two-dimensional one-component plasmas 1281 

where ~ ( ~ ~ ( x )  is the density at x.  Equation (4.3) reduces to equation (3.19). Similar sum 
rules have been derived in great generality by Gruber et a1 (1981). 

The density profiles shown in figures 4 and 5 have some simple features worth 
mentioning. Firstly, when the surface bears positive charge, a well developed layer of 
negative particles is constructed adjacent to the surface. For A = 1 repulsion of particles 
from the surface by interaction with their own images is particularly clear. For negative 
surface charge there is a depleted region close to the surface for both A = 0 and A = 1, as 
might be expected. While the bulk properties of the system are apparently insensitive 
to surface characteristics such as A and U, the surface properties show clear and explicit 
dependence on these characteristics. The length K - ~  which scales distances in these 
systems is, of course, a Debye length but the shape of the density profiles is not the linear 
exponential decay predicted by the simple Debye-Huckel theory. This is to be 
expected since r = 2 corresponds to a temperature too low for weak coupling theory to 
apply. On the other hand the quadratic exponential behaviour in the distribution 
functions is somewhat surprising. It may occur here because r = 2  is a singular 
temperature for the system. This possibility has been raised by Jancovici (1981). The 
recent result of Frohlich and Spencer (1981) that a classical two-component plasma has 
a transition from Debye (exponential) behaviour to a different form of screening 
behaviour reinforces the suggestion. 
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